Rayat Shikshan Sanstha's Karmaveer Bhaurao Patil College, Vashi Autonomous Affiliated to University of Mumbai <u>Syllabus</u>

Sr. No.	Heading	Particulars
1	Title of Course	Master in Data Science
2	Eligibility for Admission	Students with a Bachelor's degree in Mathematics / Statistics / Computer Science /Computer Application/ Information Technology / Physics/B.E. in Computer Science / Information Technology from a recognized university with a minimum aggregate score of 50% or higher are eligible for this course.
3	Passing marks	40%
4	Ordinances/Regulations (if any)	
5	Duration	Course Duration of Master of Science [M.Sc] (Data Science) is 2 Years.
6	Level	P.G.
7	Pattern	Choice Based Credit, Grading and Semester
8	Status	New
9	To be implemented from	2021-2022
	Academic year	

AC - 25/10/2021 Item No - 5.5

Rayat Shikshan Sanstha's KARMAVEER BHAURAO PATIL COLLEGE, VASHI. NAVI MUMBAI (AUTONOMOUS COLLEGE) Sector-15- A, Vashi, Navi Mumbai - 400 703

Syllabus for M.Sc. in Data Science

Program: M.Sc. Data Science I

(Choice Based Credit, Grading and Semester System with effect from the academic year 2021-22)

Preamble

This syllabus is an honest attempt to include following ideas, among other things, into practice:

- Create a unique identity for MSc in Data Science distinct from similar degrees in other related subjects.
- Recommend provision for specialization in Data Science.
- Specialized knowledge of the central concepts, theories, and research methods of data science as well as applied skills.
- Specialized knowledge of computer science theories, methods, practices and strategy.
- Understanding of statistical, mathematical concepts in the context of data science.
- Understanding of various analysis tools and software used in data science.
- Awareness of rapid technological changes.
- Analytical and critical thinking skills.
- Written and oral communication skills, including presentations and report writing.

M.Sc in Data Science is a postgraduate course that comes under the set of science as a major field of study. The duration of the course is 2 years which is equally divided into 4 semesters. In the third semester, one of the course is an internship. M.Sc Data Science course syllabus is designed in a manner that covers all the aspects of Data Science.

The syllabus proposes to have three core compulsory courses, one Skill Enhancement Course and one Discipline Specific Elective course in semester I. Semester II also proposes three core compulsory courses, one Skill Enhancement Course and one Discipline Specific Elective course. The course gives insights into the practical and theoretical aspects of data science, Big data analytics, Business Analytics, Real-Time Processing, Neural Networks, Artificial Intelligence, and Machine Learning. The primary focus of the course is to equip the candidates of the course with principal concepts of data science and application of the same in real-time processing and applications.

Data science combines the knowledge of mathematics, computer science and statistics to solve exciting data-intensive problems in industry and in many fields of science. As data is collected and analysed in all areas of society, demand for professional data scientists is high and will grow higher.

We thank all the industry experts, senior faculties and our colleagues of different colleges as well as BOS members who have given their valuable comments and suggestions, which we tried to incorporate.

> Choice Based Credit Semester System Academic year 2021-2022

SEMESTER - I

			SCHEM	SCHEME OF		HEME	OF	
CODE	COURSE TYPE	SUBJECT	INSTRU	CTION	EXA	MINA	TION	NO. OF
			(PERIOD PER					CREDITS
			WE	CK)		AX MA	KKS)	
		Advance Detabase	IH	LAB	CIA	SEE	IOIAL	
PGDS101	CORE	Technologies	4	-	40	60	100	4
PGDS102	CORE	Descriptive Statistics and Probability	4	-	40	60	100	4
PGDS103	CORE	Applied Linear Algebra	4	-	40	60	100	4
PGDS104 / PGCS 104	Skill Enhancement Elective-I	Data Visualization using R/ Advanced Python programming	3	_	40	60	100	3
PGDS105	Discipline Specific Elective-I OR	Data Warehousing & Mining	4	_	40	60	100	4
PGDS106	Discipline Specific Elective-II	Data Structure with Python	4	-	40	60	100	4
PGDSP101	Core Subject Practical	PRACTICAL ON ADVANCE DATABASE TECHNOLOGIES PGDS101	-	4			50	2
PGDSP102	Core Subject Practical	PRACTICAL ON DESCRIPTIVE STATISTICS AND PROBABILITY PGDS102	_	4			50	2
PGDSP103	Core Subject Practical	PRACTICAL ON APPLIED LINEAR ALGEBRA PGDS103	-	4			50	2
PGDSP104 / PGCSP104	Skill Enhancement Practical	PRACTICAL ON ADVANCED PYTHON PROGRAMMING PGDS104/PGCS104	-	2			50	1
PGDSP105A	Discipline Specific Elective-I Practical OR	PRACTICAL ON DATA WAREHOUSING & MINING PGDS105A	-	4			50	2
PGDSP105B	Discipline Specific Elective-I Practical	PRACTICAL ON DATA STRUCTURE WITH PYTHON PGDS105B	-	4			50	2
	•			•]	FOTAL	750	28

SEMESTER - II

Γ

CODE	COURSE TYPE	SUBJECT	SCHEME OF	SCHEME OF	NO. OF
			INSTRUCTION	EXAMINATION	CREDITS

			(PERIO WE	D PER EK)	(MAX MARKS)			
			ТН	LAB	CIA	SEE	TOTAL	
PGDS201	CORE	Research in Computing	4	-	40	60	100	4
PGDS202	CORE	Optimization Techniques	4	-	40	60	100	4
PGDS203	CORE	Statistical Inference	4	-	40	60	100	4
PGDS204	Skill Enhancement Elective-I	Advanced Python Programming	2	-		60	100	2
PGDS205	Discipline Specific Elective-I OR	Big Data Analytics	4	-	40	60	100	4
PGDS206	Discipline Specific Elective-I	Analysis of Algorithm	4	-	40	60	100	4
PGDSP201	Core Subject Practical	PRACTICAL ON RESEARCH IN COMPUTING PGDS201	_	4			50	2
PGDSP202	Core Subject Practical	PRACTICAL ON OPTIMIZATION TECHNIQUES PGDS202	_	4			50	2
PGDSP203	Core Subject Practical	PRACTICAL ON STATISTICAL INFERENCE PGDS203	_	4			50	2
PGDSP204	Skill Enhancement Practical	PRACTICAL ON ADVANCED PYTHON PROGRAMMING PGDS204	_	4			50	2
PGDSP205A	Discipline Specific Elective-I Practical	PRACTICAL ON BIG DATA ANALYTICS PGDS205A	-	4			50	2
PGDSP205B	Discipline Specific Elective-I Practical	PRACTICAL ON ANALYSIS OF ALGORITHM PGDS205B	_	4			50	2
	1			. ·	r	ГОТАL	750	28

Note: TH-Theory, CIA- Continuous Internal Assessment, SEE-Semester End Examination.

<u>Semester I – Theory</u>

Class: M.Sc	Branch: Data Science	Semester: I			
Subject: Advanced Database Technologies					

Period per Week(Each 60	Lecture		04	
mins)	Practical	04		
		Hours	Marks	
	Semester End Exam	2 hrs.30min	60	
Evaluation System	Continuous Internal Assessment		40	
	Semester End Practical Examination	2 hrs.	50	
	Total		150	

Course:	Advanced Database Technologies	Lectures
PGDS101	(Credits : 4 Lectures/Week: 4)	
	 Expected Learning Outcomes: After successful completion of this course, students would be able to Recall the concept of Database Systems, Relational Databases, Structure of Relational Databases & Relational Algebra. Describe the Object Databases Systems, Design the E-R model, Normalization process. Illustrate the NOSQL concept with the NOSQL database. Explain Data Modeling With Graph (NEeo4j), Key-Value Databases (Riak), Column-Family stores (Cassandra). 	
Unit I	Introduction: Purpose of Database Systems, View of Data:Data Abstraction,Instance and Schemas, Relational Databases: Tables, DML, DDL, Data storage and querying: Storage Manager, The query processor, Database Architecture, Speciality Databases Introduction to Relational Model : Structure of Relational Databases, Database Schema, Keys, Relational Algebra	8
Unit II	 Database Design and E-R model :Overview of the Design process and Entity Relationship ,Functional Dependency, Anomalies in a Databases,Normalization process: Conversion to first normal form, Conversion to second normal form, Conversion to third normal form, The Boyce-Codd Normal Form (BCNF), Fourth Normal form and fifth normal form Denormalization, Object Databases Systems: Overview of Object -Oriented concepts & characteristics Objects,,OIDs and reference types, Database design for ORDBMS,Comparing RDBMS, OODBMS & ORDBMS 	10
Unit III	Introduction to NOSQL (Core concepts): Why NoSQL,Brief History of NoSQL Databases ,Features of NoSQL,Types of NoSQL Databases,CAP Theorem,Aggregate Data Models, Data modeling details ,Distribution Models, Consistency ,Version stamps, Map-Reduce Implementation with NOSQL databases: Document Databases (Mongodb) MongoDB Features, MongoDB Example,Key Components of MongoDB Architecture,Why Use MongoDB,Data Modelling in MongoDB,Difference between MongoDB & RDBMS	15

	Data Modeling With Graph (NEeo4j):	
	Comparison of Relational and Graph Modeling, Property Graph Model Graph Analytics:	
	Link analysis algorithm- Web as a graph, Page Rank- Markov chain, page rank	
	computation, Topic specific page rank (Page Ranking Computation techniques: iterative	
	processing, Random walk distribution Querying Graphs: Introduction to Cypher, case	
	study: Building a Graph Database Application- community detection.	
Unit IV	Key-Value Databases (Riak):	15
	From array to key value databases, Essential features of key value Databases, Properties	
	of keys, Characteristics of Values, Key-Value Database Data Modeling Terms, Key-Value	
	Architecture and implementation Terms, Designing Structured Values, Limitations of	
	KeyValue Databases, Design Patterns for Key-Value Databases, Case Study: Key-Value	
	Databases for Mobile Application Configuration	
	Column-Family stores (Cassandra)	
	Data warehousing schemas: Comparison of columnar and row-oriented storage, Column-	
	store Architectures: C-Store and Vector-Wise, Column-store internals and,	
Unit V	Inserts/updates/deletes, Indexing, Adaptive Indexing and Database Cracking	12
	Advanced techniques: Vectorized Processing, Compression, Write penalty, Operating	14
	Directly on Compressed Data Late Materialization Joins, Group-by, Aggregation and	
	Arithmetic Operations. Case Studies	
Toyt book	•	
• No	• SOL Distilled Pramod Sadalge, Martin Fowler	
Ne	xt Generation database: NoSQL and big data by Guy Harrison	
Reference		
• No	SQL for Dummies A Willy Brand	
Links:	ng//hostingdoto og uk/noggl dotabogg/	
	ps.//nosunguata.co.uk/nosur-uatabase/	

https://www.guru99.com/what-is-mongodb.html

Sr. No.	Practicals of PGDSP101
1	Practical on Relational Algebra, SQL Commands, Normalization
2	How to Download & Install MongoDB on Windows
3	Hello World MongoDB: JavaScript Driver
4	 Install Python Driver Install Ruby Driver
5	Install MongoDB Compass- MongoDB Management Tool MongoDB Configuration, Import, and Export

6	Download a zip code dataset at http://media.mongodb.org/zips.json .Use mongo import to import the zip code dataset into MongoDB. After importing the data, answer the following questions by using aggregation pipelines: (1) Find all the states that have a city called "BOSTON". Find all the states and cities whose names include the string "BOST". Each city has several zip codes. Find the city in each state with the most number of zip codes and rank those cities along with the states using the city populations. MongoDB can query on spatial information.
7	Master Data Management using Neo4j Manage your master data more effectively The world of master data is changing. Data architects and application developers are swapping their relational databases with graph databases to store their master data. This switch enables them to use a data store optimized to discover new insights in existing data,provide 360-degree view of master data and answer questions about data relationships in real time
8	Create a database that stores road cars. Cars have a manufacturer ,a type. Each car has a maximum performance and a maximum torque value. Do the following: Test Cassandras replication schema and consistency models.
9	Case Study

Class: M.Sc-I	Branch: Data Science	Semester: I					
Subject: Descriptive Statistics and Probability							
Period per Week(Each 60	Lecture	04					
mins)	Practical	04					
		Hours	Marks				
	Semester End Exam	2 hrs.30min	60				
Evaluation System	Continuous Internal Assessment		40				
	Semester End Practical Examination	2 hrs.	50				
	Total		150				

Course:	Descriptive Statistics and Probability	Lectures
PGDS102	(Credits : 4 Lectures/Week: 4)	
	Expected Learning Outcomes:	
	After successful completion of this course, students would be able to	
	1. Describe the data and its properties by use of central tendency and	
	variability.	
	2. Explain the concepts of probability and its distributions.	
	3. Apply sampling distributions to contribute to the process of making	
	rational decisions in analytical problems	
	4. Analyze the relationship between two quantitative variables using	
	Correlation and Regression	

	Descriptive Statistics and Introduction to Probability:	
	Measures of Central Tendency: Mean, Median, Mode	
	Partition Values: Quartiles, Percentiles, Box Plot	
	Measures of Dispersion: Variance, Standard Deviation, Coefficient of variation	
	Skewness: Concept of skewness, measures of skewness	
Unit I	Kurtosis: Concept of Kurtosis, Measures of Kurtosis.	
	Probability - classical definition, probability models, axioms of probability,	
	probability of an event.	15 L
	Concepts and definitions of conditional probability, multiplication theorem	
	$P(A \cap B) = P(A).P(B A)$ Bayes' theorem (without proof)	
	Concept of Posterior probability, problems on posterior probability.	
	Definition of sensitivity of a procedure, specificity of a procedure. Application of	
	Bayes' theorem to design a procedure for false positive and false negative.	
	Concept and definition of independence of two events.	
	Numerical problems related to real life situations.	
	Introduction to Random Variables	
	Definition of discrete random and continuous random variable. Concept of	
Unit II	Discrete and Continuous probability distributions. (p.m.f. and p.d.f.).	15 L
emen	Distribution function. Expectation and variance. Numerical problems related to	
	real life situations.	
	Special Distributions	
	Pinomial Distribution Uniform Distribution Poisson Distribution Nagativa	
	Binomial Distribution, Commetric Distribution, Continuous Uniform Distribution	
	Binomial Distribution, Geometric Distribution, Continuous Chinorni, Distribution,	
Unit III	Exponential Distribution Normal Distribution Log Normal Distribution Gamma	15 T
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution	15 L
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution.	15 L
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.)	15 L
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.)	15 L
Unit III	 Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative 	15 L
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of	15 L
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of	15 L
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX,	15 L
Unit III	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX, Concept of residual plot and mean residual sum of squares. Multiple correlation	15 L
Unit III Unit IV	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX, Concept of residual plot and mean residual sum of squares. Multiple correlation coefficient, concept, definition, computation and interpretation. Partial	15 L 15 L
Unit III Unit IV	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX, Concept of residual plot and mean residual sum of squares. Multiple correlation coefficient, concept, definition, computation and interpretation.	15 L 15 L
Unit III Unit IV	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX, Concept of residual plot and mean residual sum of squares. Multiple correlation coefficient, concept, definition, computation and interpretation. Partial correlation coefficient, concept, definition, and solution to Multicollinearity.	15 L 15 L
Unit III Unit IV	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX, Concept of residual plot and mean residual sum of squares. Multiple correlation coefficient, concept, definition, computation and interpretation. Partial correlation coefficient, concept, definition, and solution to Multicollinearity. Evaluation of the Model using R square and Adiusted R square.	15 L 15 L
Unit III Unit IV	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX, Concept of residual plot and mean residual sum of squares. Multiple correlation coefficient, concept, definition, computation and interpretation. Partial correlation coefficient, concept, definition, and solution to Multicollinearity. Evaluation of the Model using R square and Adjusted R square. Introduction to logistic regression, Difference between linear and logistic	15 L 15 L
Unit III Unit IV	Exponential Distribution, Normal Distribution, Log Normal Distribution, Gamma Distribution, Weibull Distribution, Pareto Distribution. (For all the probability distributions its pmf/pdf, p-p plot, q-q plot, generation of probabilities and random samples using R software is expected.) Correlation and Regression Bivariate data, Scatter diagram. Correlation, Positive Correlation, Negative correlation, Zero Correlation, Karl Pearson's coefficient of correlation (r), limits of r (-1 $\leq r \leq 1$), interpretation of r, Coefficient of determination (r2), Meaning of regression, difference between correlation and regression. Fitting of line Y = a+bX, Concept of residual plot and mean residual sum of squares. Multiple correlation coefficient, concept, definition, computation and interpretation. Partial correlation coefficient, concept, definition, and solution to Multicollinearity. Evaluation of the Model using R square and Adjusted R square. Introduction to logistic regression, Difference between linear and logistic regression, Logistic equation, How to build logistic regression model in R. Odds	15 L 15 L

	All topics to be covered for raw data using R software. Manual calculations are not expected.
Tort	haaka
Text	DOOK: Fundamentals of Applied Statistics (3rd Edition), Gunta and Kanoor, S. Chand and Sons
•	Fundamentals of Applied Statistics (Srd Edition), Gupta and Kapoor, S.Chand and Sons,
	An Introductory Statistics, Kannady and Contla
Pofor	An introductory Statistics, Kennedy and Gentle.
1	Statistical Methods, G.W. Snedecor, W.G. Cochran, John Wiley & sons, 1989
1.	Introduction to Linear Pagression Analysis Douglas C. Montgomery, Elizabeth A. Pack
۷.	G. Geoffrey Vining, Wiley
3	Modern Elementary Statistics Freund LE Dearson Publication 2005
$\frac{J}{4}$	Probability Statistics, Design of Experiments and Queuing theory with applications
т.	Computer Science, Trivedi K S. Prentice Hall of India New Delbi 2001
5	A First course in Probability 6th Edition Ross Pearson Publication 2006
6	Introduction to Discrete Probability and Probability Distributions, Kulkarni M B
0.	Ghatpande S.B., SIPF Academy, 2007.
7.	A Beginners Guide to R. Alain Zuur, Elena Leno, Erik Meesters, Springer, 2009.
8.	Statistics Using R, Sudha Purohit, S.D.Gore, Shailaja Deshmukh, Narosa, Publishing
	Company
Links:	
•	https://www.dcpehvpm.org/E-
	Content/Stat/FUNDAMENTAL%20OF%20MATHEMATICAL%20STATISTICS-
	S%20C%20GUPTA%20&%20V%20K%20KAPOOR.pdf
•	https://www.mathsisfun.com/data/random-variables.html

Sr. No.	Practicals of PGDSP102
1	Introduction to R-studio, mathematical and logical operators in R, Data types and data structures, simple operations and programs, matrix operations
2	Data frames, string operations, factors, handling categorical data, lists and list
3	Operations Loops and conditional statements, switch and break function

4	Apply functions, Statistical problem solving in R,
5	Visualizations in R – 1
6	Visualizations in R – 2
7	Spatial Data Representation and Graph Analysis.
8	Hands-on data manipulations1: cleaning, sub-setting, sampling, data transformations and allied data operations
9	Hands-on data manipulations2: cleaning, sub-setting, sampling, data transformations and allied data operations
10	Case Study

Class: M.Sc	Branch: Data Science	Semester: I		
Subject: Applied Linear Algebra				
Period per Week(Each 60	Lecture		04	
min)	Practical	04		
	Hours	Hours	Marks	
	Semester End Exam	2 hrs.30min	60	
Evaluation System	Continuous Internal Assessment		40	
	Semester End Practical Examination	2 hrs.	50	
	Total		150	

Course:	Applied Linear Algebra	Lecture
PGDS103	(Credits : 3 Lectures/Week: 4)	s
	Expected Learning Outcomes:	
	After successful completion of this course, students would be able to	
	1. Describe the concept of characteristic polynomial, eigenvalues and eigenvectors.	
	2. Recognize and use equivalent forms to identify matrices and solve linear systems of equations.	
	3. Explain how orthogonal projections relate to least square approximations.	
	4. Acquire the knowledge of various concepts in Applied Algebra.	
	5. Employ Python to perform various matrix and vector computations.	
TT	Matrices	
Unit I	Matrices: Introduction to Matrices, Zero and identity Matrices, Transpose, addition	15 L
	and Matrix Multiplication, Geometric Transformation, Linear and Orthogonal	

Transformations Rank of matrix, normal form, Consistency, System of Linear					
	Equations, Eigenvalues and eigenvectors.				
Unit II	VectorsIVector: Vector addition, Scalar Vector multiplication, unit vector, norm of vector.Linear Functions, Linear Combinations, Linearly dependent and independence, Basis.				
Unit III	Inner Product Space : Inner Product Spaces, Norms and Distance: Orthogonality Inner products, Cauchy-Schwarz inequality, Orthogonal projections, Gram-Schmidt orthogonalization, Matrix representation of inner product.				
Unit IV	 Least Squares Least Squares: Least Squares Problem, Solution, Solving Least Squares Problems, Examples. Least squares data fitting: Least Squares data fitting, Validation, Feature Engineering. Least Squares Classification: Classification, Least Squares Classifier, Multiclassifiers Multi Objective Least Squares: Multi Objective Least Squares, Control, Estimation and Inversion, Regularised data fitting, Complexity Constrained Least Squares problems. Constrained Least Squares Applications: Portfolio Optimization, Linear Quadratic control, Linear Quadratic State Estimation. 	15 L			
 Textbooks: Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.) Introduction to Applied Linear Algebra Vectors, Matrices and Least Squares by Stephen Boyd (Stanford University) and Lieven Vandenberghe (University of California, Los Angeles) Cambridge University Press. 					
 References: Least Squares Regression Analysis in Terms of Linear Algebra By Enders A. Robinson Kenneth H. Rosen's Discrete Mathematics and Its Applications with Combinatorics and Graph Theory 7th Edition(McGraw-Hill Education) Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi) Reference 					
Links : • <u>https://www.google.co.in/books/edition/Introduction_to_Applied_Linear_Algebra/IApaD</u> <u>wAAQBAJ?hl=en&gbpv=1&dq=Least+Squares+for+algebra&printsec=frontcover</u>					

Sr. No.	Practicals of PGDSP103
1	Introduction to numpy and sympy.
2	Write a program to do the following:

	1. Enter a vector u as a n-list
	1. Enter another vector v as a n-list
	2. Find the vector addition
	3. Find the scalar vector multiplication
3	Write a program to do the following:
	1. Enter a vector u as a n-list
	2. Enter another vector v as a n-list
	3. Find the linear Independence & Dependance of vectors
4	Write a program to find the inner product of two vectors.
5	Write a program on The K means algorithm
6	Write a program to do the following:
	1. Enter a vector b and find the projection of b orthogonal to a given vector u.
	2. Find the projection of b orthogonal to a set of given vectors
7	Write a program to do the following:
	1. Enter an r by c matrix M (r and c being positive integers)
	2. Display M in matrix format
	3. Display the rows and columns of the matrix M
	4. Find the scalar multiplication of M for a given scalar.
	5. Find the transpose of the matrix M.
8	Write a program to Find the vector –matrix multiplication of a r by c matrix M with an c-
	vector u
9	Write a program to enter a matrix and check if it is invertible. If the inverse exists, find the
	inverse.
10	Write a program to solve system of linear equation

Class: M.Sc	Branch: Data Science	Semester: I		
	Subject: Data Visualization using R			
Period per Week(Each 60	Lecture		03	
min)	Practical		01	
		Hours	Marks	
	Semester End Exam	2 hrs.30min	60	
Evaluation System	Continuous Internal Assessment		40	
	Semester End Practical Examination	2 hrs.	50	
	Total		150	

Course:	Data Visualization using R	Lecture
PGDS104	(Credits : 4 Lectures/Week: 3)	s
	Expected Learning Outcomes:	
	After successful completion of this course, students would be able to	
	1. Explain basic programming language concepts using R	

	2. Differentiate between different R data structures such as: string, number, vector,				
	matrix, data frame, factor, date and time object				
	3. Collect detailed information raw data using R profiler				
	4. Visualize your data using base R graphics				
	Overview of R : History and Overview of R- Basic Features of R-Design of the R				
	System- Installation of R- Console and Editor Panes- Comments- Installing and				
Unit I	Loading R Packages- Help Files and Function DocumentationSaving Work and				
	Exiting R- Conventions- R for Basic Math- Arithmetic- Logarithms and	15 L			
	Exponentials E-Notation- Assigning Objects- Vectors- Creating a Vector-				
	Sequences, Repetition, Sorting, and Lengths- Subsetting and Element Extraction-				
	Vector-Oriented Behaviour				
	Matrices And Arrays: Defining a Matrix – Defining a Matrix- Filling Direction-				
	Row and Column Bindings- Matrix DimensionsSubsetting- Row, Column, and				
TI 4 TT	Diagonal Extractions- Omitting and Overwriting- Matrix Operations and Algebra-	15 T			
01111-11	Matrix Transpose- Identity Matrix- Matrix Addition and Subtraction- Matrix	15 L			
	MultiplicationMatrix Inversion-Multidimensional Arrays- Subsets, Extractions, and				
	Replacements				
	Non-numeric Values : Logical Values - Relational Operators - Characters - Creating				
	a String- Concatenation- Escape SequencesSubstrings and Matching- Factors-				
	Identifying Categories- Defining and Ordering Levels- Combining and Cutting				
Unit-III	Lists And Data Frames:Lists of Objects-Component Access-Naming-Nesting-Data	15 L			
	Frames-Adding Data Columns and Combining Data Frames-Logical Record				
	Subsets-SomeSpecial, Values-Infinity-NaN-NA-NULLAttributes-Object-Class-Is-				
	Dot Object-Checking Functions-As-Dot Coercion Functions				
	Basic Plotting: Using plot with Coordinate Vectors-Graphical Parameters-				
	Automatic Plot Types-Title and Axis LabelsColor-Line and Point Appearances-				
	Plotting Region Limits-Adding Points, Lines, and Text to an Existing Plot-ggplot2				
Unit-IV	Package-Quick Plot with ggplot-Setting Appearance Constants with Geoms	15 L			
	READING AND WRITING FILES- R-Ready Data Sets- Contributed Data Sets-				
	Reading in External Data Files- Writing Out Data Files and Plots- Ad Hoc Object				
	Read/Write Operations				
TextBook	•				
1. https://v	www.cs.upc.edu/~robert/teaching/estadistica/rprogramming.pdf				
2. Tilman	M.Davies, "THE BOOK OF R - A FIRST PROGRAMMING AND STATISTICS" L	library			
of Congress Cataloging-in-Publication Data,2016					
Keterences:					
$\frac{1}{2}$ Ste	2. Steven Keller. "R Programming for Beginners" CreateSpace Independent Publishing Platform				
201	2016				
3. Ku	n Ren ,"Learning R Programming", Packt Publishing,2016				
Links:					
• htt	ps://r4ds.had.co.nz/				

Sr. No.	Practicals of PGDSP104
1	1. Develop the R program for Basic Mathematical computation – Square, Square root,
	exponential etc.
	2. Create an object X that stores the value then overwrite the object in by itself divided by Y.
	Print the result to the console.
	3. Create and store a sequence of values from x to y that progresses in steps of 0.3
2	Create and store a three-dimensional array with six layers of a 4 X 2 matrix, filled with a
	decreasing sequence of values between 4.8 and 0.1 of the appropriate length
3	Extract and store as a new object the fourth- and first-row elements, in that order, of the second
	column only of all layers of (1).
4	1.Confirm the specific locations of elements equal to 0 in the 10 X 10 identity matrix I10
	2. Store this vector of 10 values: foo $<- c(7,5,6,1,2,10,8,3,8,2)$. Then, do the following: i. Extract
	the elements greater than or equal to 5, storing the result as bar. ii. Display the vector
	containing those elements from foo that remain after omitting all elements that are greater than
	or equal to 5.
5	Store the string "Two 6-packs for \$12.99". Then do the following:
	i. Use a check for equality to confirm that the substring beginning with character 5 and ending
	with character 10 is "6-pack".
	ii. Make it a better deal by changing the price to \$10.99
6	Create a list that contains, in this order, a sequence of 20 evenly spaced numbers between -4
	and 4; a 3 X 3 matrix of the logical vector c(F,T,T,T,F,T,T,F,F) filled column-wise; a character
	vector with the two strings "don" and "quixote"; and a factor vector containing the observations
	c("LOW","MED","LOW","MED","MED","HIGH"). Then, Extract row elements 2 and 1 of
	columns 2 and 3, in that order, of the logical matrix.
7	Create and store this data frame as dframe with the fiiels of person, sex, funny in your R
	workspace. Append the two new records. 3. Write a single line of code that will extract from
	mydataframe just the names and ages of any records where the individual is female and has a
0	level of funniness equal to Med OR High
8	Create a database with the fields of weight, height and sex then create a plot of weight on the x-
	axis and height on the y-axis. Use different point characters or colors to distinguish between
0	males and remales and provide a matching legend. Label the axes and give the plot a title.
9	Create a plot using ggplot2 for the same database consisting of weight on the x-axis and height
	on the y-axis. Use different point characters or colors to distinguish between males and females
10	and provide a matching legend. Label the axes and give the plot a title.
10	write R code that will plot education on the x-axis and income on the y-axis, with both x- and
	y-axis minus fixed to be [0,100]. Provide appropriate axis labels. For jobs with a prestige value
	then 80° use a blue @

Class: M.Sc	Branch: Data Science	Semester: I	
	Subject: Data Warehousing & Mining		
Period per Week(Each 60	Lecture	04	
min)	Practical	04	
Evaluation System		Hours	Marks
Evaluation System	Semester End Exam	2 hrs.30min	60

Continuous Internal Assessment		40
Semester End Practical Examination	2 hrs.	50
Total		150

Course:	Data Warehousing & Mining	Lecture		
PGDS105	(Credits: 4 Lectures/week: 4)	S		
	After successful completion of this course, students would be able to			
	1. Explain the operational and decision support system.			
	2. Evaluate the impact of use and information using knowledge discovery in a	databases		
	and KDD process models.			
	3. Summarize the data mining concepts with the help of Apriori algorithm,	support,		
	confidence and trees.			
	4. Construct data models and prototypes needed to gain stakeholder support to	j acmeve		
	Data Warehouse Fundamentals: Introduction to Data Warehouse OI TP			
	Systems Differences between OLTP Systems and Data Warehouse			
Unit I	Characteristics of Data Warehouse, Components of Data Warehouse, Advantages	081		
	and Applications of Data Warehouse, Top- Down and Bottom-Up Development	UOL		
	Methodology, Tools for Data warehouse development, Data Warehouse Types,			
	Planning and Requirements: Introduction: Planning Data Warehouse and Key			
	Issues. Data warehouse Project. Data Warehouse development Life Cycle. The			
Unit-II	Project Team, Requirements Gathering Approaches: Team organization, Roles, and	10 L		
	Responsibilities. Extraction - Transformation - Loading			
	OLAP : Introduction, Characteristics, Advantages, Disadvantages; OLTP vs OLAP.			
	Data cubes. Data cube operations. OLAP types.			
	Dimensional Modeling : Dimensional Modeling Basics, E-R Modeling Versus			
Unit-III	Dimensional Modeling, Data Warehouse Schemas: Star Schema, Inside	15 L		
	Dimensional Table, Inside Fact Table, Fact Less Fact Table, Star Schema Keys:			
	Snowflake Schema, Slowly Changing Dimensions			
	Data Mining : Introduction to Data Mining, The process of knowledge discovery in			
	databases, predictive and descriptive data mining techniques, supervised and			
Unit-IV	unsupervised learning techniques.	15 L		
	Data preprocessing: Data cleaning, Data transformation, Data reduction,			
	Discretization.			
	Classification: Decision trees, Bayesian classification,			
	Clustering: Basic issues in clustering, k-means clustering, Hierarchical clustering-			
Unit - V	Agglomerative clustering, Divisive clustering, Density-based methods- DBSCAN	12L		
	Association Rule Mining: Support, Confidence, Frequent item sets, Apriori			
	algorithm			
TextBook:				

- 1. Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals. Paulraj Ponniah
- 2. Data Mining: Concepts and Techniques, The Morgan Kaufmann Series in Data Management Systems, Han J. and Kamber M. Morgan Kaufmann Publishers, (2000).

3. Data Mining: Introductory and Advanced Topics, Dunham, Margaret H, Prentice Hall (2006)

References:

- 1. Luis Torgo, Data Mining with R Learning with Case Studies, Second Edition, CRC Press, 2017
- 2. Building the Data Warehouse, Inmon: Wiley (1993).

Links:

- 1) http://www.vssut.ac.in/lecture_notes/lecture1428550844.pdf
- 2) https://lecturenotes.in/subject/32/data-mining-and-data-warehousing-dmdw

Sr. No.	Practical of PGDSP105
1.	Create tables using different applications.
2.	Develop an application to design a warehouse by importing various tables from external sources
3.	a. Develop an application to creating a fact table and measures in a cube
	b. Develop an application to create dimension tables in a cube and form star schema.
4.	Develop an application to create fact and dimension tables in a cube and form snowflake
	schema
5.	Develop an application to demonstrate operations like roll-up, drill-down, slice, and dice.
6.	Develop an application to demonstrate processing and browsing data from a cube.
7.	Develop an application to pre-process data imported from external sources.
8.	Pre-process the given data set and hence apply hierarchical algorithms and
	density based clustering techniques. Interpret the result.
9.	Pre-process the given data set and hence classify the resultant data set using
	tree classification techniques. Interpret the result.
10.	Create association rules by considering suitable parameters.

Class: M.Sc	Branch: Data Science	Semester: I			
	Subject: Data Structure with Python				
Period per Week(Each 60	Lecture		04		
min)	Practical	04			
		Hours	Marks		
Esselvation Costons	Semester End Exam	2 hrs.30min	60		
Evaluation System	Continuous Internal Assessment		40		
	Semester End Practical Examination	2 hrs.	50		

|--|

Course:	Data Structures with Python	Lecture
PGDS106	(Credits : 4 Lectures/Week: 4)	S
	 Expected Learning Outcomes: After successful completion of this course, students would be able to Recall the concepts of arrays, strings and algorithms for basic operations. Recognize the concept of stacks, queues, linked list and algorithms for operations. Identify the familiarity with major algorithms and data structures Analyze appropriate algorithms and data structures for various applications Formulate the computational complexity of various algorithms 	for basic
	Abstract Data Types: Introduction, The Date Abstract Data Type, Bags, Iterators.	
Unit I	 Application Arrays: Array Structure, Python List, Two Dimensional Arrays, Matrix Abstract Data Type, Application Sets and Maps: Sets-Set ADT, Selecting Data Structure, List based Implementation, Maps-Map ADT, List Based Implementation, Multi-Dimensional Arrays-Multi-Array ADT, Implementing Multi Arrays, Application Algorithm Analysis: Complexity Analysis-Big-O Notation, Evaluating Python Code, Evaluating Python List, Amortized Cost, Evaluating Set ADT, Application Searching and Sorting: Searching-Linear Search, Binary Search, Sorting-Bubble, Selection and Insertion Sort, Working with Sorted Lists-Maintaining Sorted List, Maintaining sorted Lists 	15 L
	Linked lists • Linear lists Single Linked List and Chains Representing Chains	
Unit-II	Designing a Chain Class, Chain Manipulation Operations, The Template Class Chain, Implementing Chains with Templates, Chain Iterators, Chain Operations, Circular List, Doubly Linked Lists, Skip list, Generalized Lists, Representation of Generalized Lists, Recursive Algorithms for Lists, Reference Counts, Shared and Recursive Lists	15 L
Unit-III	 Stacks: Stack ADT, Implementing Stacks-Using Python List, Using Linked List, Stack Applications-Balanced Delimiters, Evaluating Postfix Expressions Queues:Queue ADT, Implementing Queue-Using Python List, Circular Array, Using List, Priority Queues- Priority Queue ADT, Bounded and unbounded Priority Queues Advanced Sorting: Merge Sort, Quick Sort, Radix Sort, Sorting Linked List 	15 L
Unit-IV	Recursion: Recursive Functions, Properties of Recursion, Its working, Recursive Hash Table: Introduction, Hashing-Linear Probing, Clustering, Rehashing, Separate Chaining, Hash Functions Binary Trees: Tree Structure, Binary Tree-Properties, Implementation and Traversals, Expression Trees, Heaps and Heapsort, Search Trees, R-Trees & R+ Trees.	15 L

TextBook:

Data Structure and algorithm Using Python, Rance D. Necaise, 2016 Wiley India Edition
 Data Structure and Algorithm in Python, Michael T. Goodrich, Robertom Tamassia, M. H. Goldwasser, 2016 Wiley India Edition

References:

- 1. Data Structure and Algorithmic Thinking with Python-Narasimha Karumanchi, 2015, Careermonk Publications
- 2. Fundamentals of Python: Data Structures, Kenneth Lambert, Delmar Cengage Learning **Links:**

https://lecturenotes.in/subject/81/data-structure-using-c-ds http://www.cs.yale.edu/homes/aspnes/classes/223/notes.pdf https://www.smartzworld.com/notes/data-structures-pdf-notes-ds/ https://www.geeksforgeeks.org/data-structures/

Sr. No.	Practicals of PGDSP106
1	Implement Linear Search to find an item in a list.
2	Implement binary search to find an item in an ordered list
3	Implement Sorting Algorithms
	a. Bubble sort
	b. Insertion sort
	c. Quick sort
	d. Merge sort
4	Implement use of Sets and various operations on Sets.
5	Implement working of Stacks. (pop method to take the last item added off the stack and a push
	method to add an item to the stack)
6	Implement Program for
	a. Infix to Postfix conversion
	b. Postfix Evolution
7	Implement the following
	a. A queue as a list which you add and delete items from.
	b. A circular queue. (The beginning items of the queue can be reused).
8	Implement Linked list and demonstrate the functionality to add and delete items in the linked
	list.
9	Implement Binary Tree and its traversals.
10	Recursive implementation of
	a. Factorial
	b. Fibonacci
	c. Tower of Hanoi

Class: M.Sc	Branch: Data Science	Semester: II	
	Subject: Research in Computing		
Period per Week(Each 60	Lecture		04
min)	Practical/ Tutorial	04	
		Hours	Marks
	Semester End Exam	2 hrs.30min	60
Evaluation System	Continuous Internal Assessment		40
	Semester End Practical Examination	2 hrs.	50
	Total		150

Course:	Research in Computing	Lecture
PGDS201	(Credits : 4 Lectures/Week: 4)	S
	Expected Course Outcomes	
	After successful completion of this course, students would be able to	
	1) Develop analytical skills by applying scientific methods.	
	2) Review the existing research article on Machine learning & Business	
	analytics	
	3) Survey the specific research areas in field of Computer Science	
	4) Test & validate the proposed methodology on research problems.	
Unit I	Introduction: Role of Business Research, Information Systems and Knowledge Management, Theory Building, Organization othics and Issues	12 L
	Paging Stages of Descent Process Problem definition	
Unit-II	Beginning Stages of Research Process: Problem definition,	12 L
	Quantative research tools, Secondary data research	
Unit-III	respondents, Observation methods, Experimental research	12 L
	Measurement Concepts, Sampling and Field work: Levels of Scale	
Unit-IV	measurement, attitude measurement, questionnaire design, sampling designs and	12 L
	procedures, determination of sample size	
	Data Analysis and Presentation: Editing and Coding, Basic Data Analysis,	
Unit-V	Univariate Statistical Analysis and Bivariate Statistical analysis and differences	12 L
	between two variables. Multivariate Statistical Analysis.	
TextBook:		
1. Busine	ss Research Methods, William G.Zikmund, B.J Babin, J.C. Carr, Atanu Adhikari, M	.Griffin,
8th Editio	n. 2016.	
2. Busine	ss Analytics, Albright Winsto, 5th Edition, 2015	
3.Researc	h Methods for Business Students Fifth Edition, Mark Saunders, 2011.	
4.Multiva	riate Data Analysis, Hair, Pearson, 7th Edition, 2014.	
References	5:	
Links:		

- http://www.library.auckland.ac.nz/subject-guides/med/pdfs/Hindex%20and%20impact%20factors.pdf
 www.openintro.org/stat/down/OpenIntroStatFirst.pdf

Sr. No.	Practical of PGDSP201		
	Α	Write a program for obtaining descriptive statistics of data.	
1		Import data from different data sources (from Excel,csv, mysql, sql server, oracle	
	В	to R/Python/Excel)	
2	Α	Design a survey form for a given case study, collect the primary data and analyze it	
	В	Perform suitable analysis of given secondary data.	
	Α	Perform testing of hypothesis using one sample t-test.	
3	В	Perform testing of hypothesis using two sample t-test.	
	С	Perform testing of hypothesis using paired t-test.	
A	Α	Perform testing of hypothesis using chi-squared goodness-of-fit test.	
4	В	Perform testing of hypothesis using chi-squared Test of Independence	
5		Perform testing of hypothesis using Z-test.	
	Α	Perform testing of hypothesis using one-wayANOVA.	
6	В	Perform testing of hypothesis using two-wayANOVA.	
	С	Perform testing of hypothesis using multivariateANOVA (MANOVA).	
7	Α	Perform the Random sampling for the given data and analyse it.	
/	В	Perform the Stratified sampling for the given data and analyse it.	
8	Compute different types of correlation.		
0	Α	Perform linear regression for prediction.	
7	В	Perform polynomial regression for prediction.	
10	Α	Perform multiple linear regression.	
10	В	Perform Logistic regression.	

Class: M.Sc	Branch: Data Science	Semester: II	
	Subject: Optimization Techniques	·	
Period per Week(Each 60 min)	Lecture		04
	Practical		04
Evaluation System		Hours	Marks

Semester End Exam	2 hrs.30min	60
Continuous Internal Assessment		40
Semester End Practical Examination	2 hrs.	50
Total		150

Course:	Optimization Techniques (Credits : 4 Lectures/Week: 2)	Lectures
10D5202	Fynected Learning Outcomes:	
	After successful completion of this course, students would be able to	
	1) Explain the theory of optimization methods and algorithms.	
	2) Apply the mathematical results and numerical techniques of optimization	theory to
	concrete data science problems.	,
	3) Apply basic concepts of mathematics to formulate an optimization problem.	
	4) Analyze and appreciate a variety of performance measures for various optim problems	nization
	Introduction to Operations Research	
	Introduction-Mathematical models of Operation Research-Scope and applications of	
	Operation Research-Phases of Operation Research study-Characteristics of	
	Operation Research-Limitations of Operation Research	
Unit I	Linear Programming	15 L
	Introduction – Properties of Linear Programming-Basic assumptions-Mathematical	
	formulation of Linear Programming-Limitations or constraints-Methods for the	
	solution of LP Problem-Graphical analysis of LP-Graphical LP Maximization	
	problem-Graphical LP Minimization problem	
	Dual Linear Programming	
TT 14 TT	Introduction- Primal and Dual problem -Dual problem properties-Solution	1 <i>5</i> T
Unit-II	techniques of Dual problem-Dual Simplex method-Relations between direct and	15 L
	dual problem-Economic interpretation of Duality	
	Transportation and Assignment Models	
Unit III	Introduction: Transportation problem-Balanced-Unbalanced-Methods of basic	15 T
01111-111	feasible solutionOptimal solution-MODI method. Assignment problem-Hungarian	13 L
	Method.	
	Network Analysis	
IInit_IV	Basic concepts-Construction of Network-Rules and precautions-CPM and PERT	15 L
0mt-1 v	NetworksObtaining of critical path. Probability and cost consideration. Advantages	15 L
	of Network.	
TextBook	:	
1) Ha	mdy Taha, Operations Research, 10th edition, Prentice Hall India, 2019.	
2) P.	K. Gupta and D. S. Hira, Operations Research, S. Chand & co., 2007	
Reference	s:	
1) S.I	D. Sharma (2000), Operations Research, Nath & Co., Meerut. Maurice Solient, Arthur	
Ya	spen, Lawrence Fridman, (2003), OR methods and Problems, New Age Internationa	1
Ed	ition.	
$\begin{array}{c} 2) J K \\ \tilde{z} \end{array}$	Sharma (2007), Operations Research Theory & Applications, 3e, Macmillan India	Ltd. P.
Sa	1kara Iyer, (2008), Operations Research, Tata McGraw-Hill.	

3) A Ravindran, Don T Philips and James J Solberg, Operations Research: Principles and Practice, 2nd edition, John Wiley and sons, 2007

Links:

https://towardsdatascience.com/tagged/optimization-algorithms https://www.geeksforgeeks.org/optimization-for-data-science/

Sr. No.	Tutorial of PGDSP206
1	A minimum of 5 problems to be worked out by students in every tutorial class. Another 5
	problems per tutorial class to be given as a home work

Class: M.Sc	Branch: Data Science	Semester: II			
	Subject: Statistical Inference				
Period per Week(Each 48	Lecture	04			
min)	Practical	04			
		Hours	Marks		
Esselve dia a Grada an	Semester End Exam	2 hrs.30min	60		
Evaluation System	Continuous Internal Assessment		40		
	Semester End Practical Examination	2 hrs.	50		

Total 150

Course:	Statistical Inference	Lectures	
PGDS203	(Credits : 3 Lectures/Week: 3)		
	Expected Learning Outcomes:		
	After successful completion of this course, students would be able to		
	1. Recognize several basic types of statistical problems corresponding to		
	various sampling designs.		
	2. Define null hypothesis, alternative hypothesis, level of significance, test		
	statistic, p value, and statistical significance.		
	5. Describe the statistical decision-making theory and interpretation. A Demonstrate knowledge of the main properties of $\Delta R(1) \Delta R(2) \Delta RIM \Delta$		
	models.		
	5. Demonstrate computational skills to implement various statistical		
	inferential approaches.		
	Sampling & Sampling Distributions		
	Introduction to Sampling, Simple random Sampling, Stratified Random		
Unit I	Sampling, Cluster Sampling, Concept of Sampling Error, Introduction to	1 - 1	
	Sampling distributions, Student's t distribution, Chi square distribution,	15 L	
	Snedecor's F distribution, Interrelations among t, chi-square and F distributions,		
	Central Limit Theorem (Various Versions) and its applications.		
	Testing of hypothesis		
	Definitions: population, statistic, parameter, standard error of estimator.		
	Concept of null hypothesis and alternative hypothesis, critical region, level of		
Unit II	significance, type I and type II error, one sided and two-sided tests, p- value.	15 L	
	Large Sample Tests, Tests based on t, Chi-square and F-distribution.		
	All tests to be taught using R software. Manual calculations are not		
	expected.		
	Analysis of Variance		
Un:4 III	One Way ANOVA, Two Way ANOVA, Application of ANOVA to test the	15 T	
Unit III	overall significance of Regression.	15 L	
	All topics to be covered using R software. Manual calculations are not expected.		
	Time Series		
Unit IV	Meaning and Utility. Components of Time Series. Additive and Multiplicative		
	models. Methods of estimating trend: moving average method, least squares	15 T	
	method and exponential smoothing method. (single, double and triple),	15 L	
	Elimination of trend using additive and multiplicative models. Simple time		
	series models: AR (1), AR (2). Introduction to ARIMA Modelling.		
TextBook:			
1 Fund	amentals of Applied Statistics (3rd Edition) Gunta and Kanoor S Chand and So	ng Now	
1. Fulla Delhi	Delhi 1987		
2. Time	Series Methods, Brockell and Devis, Springer, 2006.		

3. Time Series Analysis,4th Edition, Box and Jenkin, Wiley, 2008.

References:

- 1. Modern Elementary Statistics, Freund J.E., Pearson Publication, 2005.
- 2. Probability, Statistics, Design of Experiments and Queuing theory with applications Computer Science, Trivedi K.S. ,Prentice Hall of India, New Delhi,2001.
- 3. Common Statistical Tests, Kulkarni M.B., Ghatpande S.B., Gore S.D., Satyajeet Prakashan, Pune, 1999.
- 4. Probability And Statistical Inference, 9th Edition, Robert Hogg, Elliot Tanis, Dale Zimmerman, Pearson education Ltd, 2015. A Beginners Guide to R, Alain Zuur, Elena Leno, Erik Meesters, Springer, 2009.

5. Statistics Using R, Sudha Purohit, S.D.Gore, Shailaja Deshmukh, Narosa, Publishing Company. Links:

- 1. https://www.youtube.com/watch?v=10cuDKGytMw
- 2. https://www.tutorialspoint.com/time_series/time_series_moving_average.htm
- 3. <u>https://otexts.com/fpp2/arima-r.html</u>

Sr. No.	Practicals of PGDSP203
1	Write a program on sampling distribution.
2	Write a program on Central Limit Theorem.
3	Write a program on normal test
4	Write a program on t test
5	Write a program on Chi-square
6	Write a program on F-distribution
7	Write a program on One Way ANOVA
8	Write a program on Two Way ANOVA
9	Write a program on AR (1), AR (2)
10	Write a program on ARIMA Modelling

Class: M.Sc	Branch: Data Science	Semester: II	
	Subject: Advanced Python Programm	ing	
Period per Week(Each 60	Lecture	03	
min)	Practical	02	
		Hours	Marks
	Semester End Exam	2 hrs.30min	60
Evaluation System	Continuous Internal Assessment		40
	Semester End Practical Examination	2 hrs.	50
	Total		150

Course:	Advanced Python Programming	Lectures	
PGDS204	(Credits : 4 Lectures/Week: 2)		
	Expected Learning Outcomes:		
	After successful completion of this course, students would be able to		
	1. Explain fundamental understanding of the Python programming language.		
	2. Describe common Python functionality and features used for data science		
	3. Illustrate the Object-oriented Programming concepts in Python.		
	4. Visualize and describe DataFrame structures for cleaning and processing data		
	LIST MANIPULATION: Introduction to Python List Creating List Accessing		
	List Joining List Replicating List List Slicing, list comprehension		
	TUPLES Introduction to Tuple. Creating Tuples. Accessing Tuples. Joining		
	Tuples Replicating Tuples Tuple Slicing		
Unit I	DICTIONARIES Introduction to Dictionary Accessing values in dictionaries	15 T	
	Working with dictionaries Properties	15 L	
	Set and Frozeset: Introduction to Set and Frozenset, Creating Set and Frozenset,		
	Accessing and Joining, Replicating and Slicing		
	Regular Expressions: Match function, Search function, Grouping, Matching at		
	Beginning or End, Match Objects, Flags		
	Object-Oriented Programming: Classes and Objects, Creating Classes in Pythor		
	Creating Objects in Python, The Constructor Method, Classes with Multiple Objects		
	Class Attributes versus Data Attributes, Encapsulation, Inheritance Th		
	Polymorphism.		
Unit_II	Functional Programming: Iterators, Generators, Decorators	15 T	
01111-11	Files and Working with Text Data: Types of Files, Creating and Reading Text	13 L	
	Data, File Methods to Read and Write Data, Reading and Writing Binary Files, The		
	Pickle Module, Reading and Writing CSV Files, Python os and os.pathModules,		
	JSON and XML in Python, Processing HTML Files, Processing Texts in Natural		
	Languages		

Working with Tabular Numeric Data(Numpy with Python): NumPy Arrays	
Creation Using array() Function, Array Attributes, NumPy Arrays Creation with	
Initial Placeholder Content, Integer Indexing, Array Indexing, Boolean	
ArrayIndexing, Slicing and Iterating in Arrays, Basic Arithmetic Operations on	
NumPy Arrays, Mathematical Functions in NumPy, Changing the Shape of an	
Unit-III Array, Stacking and Splitting of Arrays, Broadcasting in Arrays.	15 L
Working with Data Series and Frames: Pandas Data Structures, Reshaping Data	a, 10 1
Handling Missing Data, Combining Data, Ordering and Describing Data,	,
Transforming Data, Taming Pandas File I/O	
Plotting: Basic Plotting with PyPlot, Getting to Know Other Plot Types, Masterin	ıg
Embellishments, Plotting with Pandas	
Textbook:	
• Michael Urban and Joel Murach, Python Programming, Shroff/Murach, 2016	
• Halterman Mark Lutz, Programming Python, O'Reilly, 4th Edition, 2010	
References:	
1. Wesley J. Chun, "Core Python Programming", Prentice Hall, 2006.	
2. Mark Lutz, "Learning Python", O'Reilly, 4th Edition, 2009	
Links:	
https://www.w3schools.com/python	
https://docs.python.org/3/tutorial/index.html	
https://www.python-course.eu/advanced_topics.php	

Sr. No.	Practicals of PGDSP204
1	a. Program with a function that takes two lists L1 and L2 containing integer numbers as
	parameters. The return value is a single list containing the pairwise sums of the numbers
	in L1 and L2
	b. Program to read the lists of numbers as L1, print the lists in reverse order without using
	reverse function.
2	Program to find max and min of a given tuple of integers.
3	Write a program that combine lists L1 and L2 into a dictionary.
4	Program to find union, intersection, difference, symmetric difference of given two sets.
5	Write a program for searching, splitting and replacing things based on pattern matching using regular expression.
6	Write programs to parse text files, CSV, HTML, XML and JSON documents
	and extract relevant data. After retrieving data check any anomalies in the data, missing values etc.
7	Write programs for reading and writing binary files

8	a.	Program to implement the inheritance
	b.	Program to implement the polymorphism
9	Write	programs to create numpy arrays of different shapes and from different sources, reshape
	and sli	ce arrays, add array indexes, and apply arithmetic, logic, and aggregation functions to
	some o	or all array elements
10	Write	programs to use the pandas data structures: Frames and series as storage containers and
	for a v	ariety of data-wrangling operations, such as:
	•	Single-level and hierarchical indexing
	•	Handling missing data
	•	Arithmetic and Boolean operations on entire columns and tables
	•	Database-type operations (such as merging and aggregation)
	•	Plotting individual columns and whole tables
	•	Reading data from files and writing data to files
Datasets		
For this la	aborato	bry, appropriate publicly available datasets, can be studied and
used. Exa	mple:	
MNIST (http://y	<u>ann.lecun.com/exdb/mnist/</u>),
UCI Mac	hine Lo	earning
Repositor	y(<u>https</u>	s://archive.ics.uci.edu/ml/datasets.html),
Kaggle(<u>h</u> t	ttps://w	<u>ww.kaggle.com/datasets</u>)
Twitter D	ata	

Class: M.Sc	Branch: Data Science	Semester: II	
	Subject: Big Data Analytics	L	
Period per Week(Each 60 min)	Lecture	04	
	Practical		04
		Hours	Marks
	Semester End Exam	2 hrs.30min	60
Evaluation System	Continuous Internal Assessment		40
	Semester End Practical Examination	2 hrs.	50
	Total		150

Course:	Big Data Analytics	Lectures
PGDS205	(Credits : 4 Lectures/Week: 2)	
	Expected Learning Outcomes:	
	After successful completion of this course, students would be able to	
	1. Describe the fundamentals of various big data analytics techniques.	
	2. Design efficient algorithms for mining the data from large volumes.	
	3. Analyze the HADOOP and Map Reduce technologies associated with big dat	a analytics.
	4. Prepare a complete business data analytics solution	
	Understanding Big Data:	
Unit I	What is big data, why big data, Data Storage and Analysis, Comparison with Other	15 1
	Systems, Relational Database Management System, Grid Computing, Volunteer	15 L
	Computing, unstructured data, industry examples of big data, web analytics, big data	L

	and marketing, fraud and big data, risk and big data, big data and healthcare, big data in medicine, advertising and big data, big data technologies, cloud and big data,		
	Crowd sourcing analytics, Big Data ManBaduca, ManBaduca, Introduction to Man Baduca: The man tasks		
	Grouping by key. The reduce tasks, Combiners, Details of ManDeduce Execution		
	Glouping by key, The feduce tasks, Combiners, Details of MapReduce Execution,	1 - 1	
Unit-II	word Count MapReduce, Different tools on Big data Platform, vector data	15 L	
	(newspaper article or document search), PageRank Algorithm, Twitter Data		
	Analytic, Social Media mining		
	Basics of Hadoop		
	Data format, introduction to Hadoop, Hadoop ecosystem, analyzing data with		
Unit-III	Hadoop, scaling out, Hadoop streaming, Hadoop pipes, design of Hadoop	15 L	
	distributed file system (HDFS), HDFS concepts, Java interface, data flow, Hadoop		
	1/O, data integrity, compression, serialization, Avro – Ine-based data structures		
	A General Overview of High-refformance Architecture – HDFS – Mapkeduce		
Unit-IV	and YARN – Map Reduce Programming Model, Hive, storage of Hive data	15 L	
	(database) in HDFS, Query writing to achieve business tasks, Database		
	management, Query optimization, Views and Partition		
	Apache Pig, What is PIG?, Pig Architecture, Prerequisites, How to Download and		
Unit-V	Install Pig, Example Pig Script, Data flow programming, Storing data in HDFS /		
	Hood, MongoDB, Database creation, Query building, regular expression		
TextBool	Χ:		
1. Bi	g Data, Black Book: Covers Hadoop 2, MapReduce, Hive, YARN, Pig, R and Data		
V	sualization, By DT Editorial Services, 2016		
2. Pr	ogramming Hive. By Jason Rutberglen, Dean Wampler, Edward Copriolo, 2012		
3. Pr	3. Programming Pig by Anal Gates, 2011		
4. M	ongoDB: The Definitive Guide, by Kristina Chodorow, 2013		
Keferenc			
1. Hadoop, The Definitive Guide, by Tom White, 2015			
2. M	ining of massive Datasets, by jure Leskovec, Anand Rajaraman, Jeffrey D. Uliman, 2	.015	

Links: http://index-of.co.uk/Big-DataTechnologies/Data%20Science%20and%20Big%20Data%20Analytics.pdf

Sr. No.	Practicals of PGDSP205
1	Write a map-reduce program to count the number of occurrences of each
	alphabetic character in the given dataset. The count for each letter should be
	case-insensitive (i.e., include both upper-case and lower-case versions of the
	letter; Ignore non-alphabetic characters).
2	Write a map-reduce program to count the number of occurrences of each word in
	the given dataset. (A word is defined as any string of alphabetic characters
	appearing between non-alphabetic characters like nature's is two words. The
	count should be case-insensitive. If a word occurs multiple times in a line, all
	should be counted)
3	Write a map-reduce program to determine the average ratings of movies. The
	input consists of a series of lines, each containing a movie number, user number,
	rating and a timestamp.
4	(i)Perform setting up and Installing Hadoop in its two operating modes:

	a. Pseudo distributed,
	b. Fully distributed.
	(ii) Use web based tools to monitor your Hadoop setup
5	Implement the following file management tasks in Hadoop:
	a. Adding files and directories
	b. Retrieving files
	c. Deleting files
6	Install and Run Hive then use Hive to create, alter, and drop databases, tables, views, functions,
	and indexes
7	Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data.
8	Case Study

Class: M.Sc	Branch: Data Science	Semester: II	
	Subject: Analysis of Algorithms		
Period per Week(Each 48	Lecture	04	
min)	Practical	04	
		Hours	Marks
	Semester End Exam	2 hrs.30min	60
Evaluation System	Continuous Internal Assessment		40
	Semester End Practical Examination	2 hrs.	50
	Total		150

Course:	Analysis of Algorithms	Lectures
PGDS206	(Credits : 4 Lectures/Week: 4)	
	Expected Learning Outcomes:	
	After successful completion of this course, students would be able to	
	1. Explain the concepts of algorithms for designing good program	
	2. Implement algorithms using Python	
	3. Determine how to transform new problems into algorithmic problems	
	with efficient solutions	
	4. Illustrate algorithm design techniques for solving different problems	
	Introduction to algorithm, Why to analysis algorithm, Running time analysis,	
	How to Compare Algorithms, Rate of Growth, Commonly Used Rates of	
Unit I	Growth, Types of Analysis, Asymptotic Notation, Big-O Notation, Omega- Ω	15 T
	Notation, Theta-O Notation, Asymptotic Analysis, Properties of Notations,	13 L
	Commonly used Logarithms and Summations, Performance characteristics of	
	algorithms, Master Theorem for Divide and Conquer, Divide and Conquer	
	Tree algorithms: What is a Tree? Glossary, Binary Trees, Types of Binary	
Unit II	Trees, Properties of Binary Trees, Binary Tree Traversals, Generic Trees (N-ary	
	Trees), Threaded Binary Tree Traversals, Expression Trees, Binary Search Trees	15 L
	(BSTs), Balanced Binary Search Trees, AVL (Adelson-Velskii and Landis)	
	Trees	

	Graph Algorithms: Introduction, Glossary, Applications of Graphs, Graph	
	Representation, Graph Traversals, Topological Sort, Shortest Path Algorithms,	
	Minimal Spanning Tree	
	Selection Algorithms: What are Selection Algorithms? Selection by Sorting,	
	Partition-based Selection Algorithm, Linear Selection Algorithm - Median of	
	Medians Algorithm, Finding the K Smallest Elements in Sorted Order	
	Divide and Conquer Concept of divide and Conquer, Binary Search (recursive),	
	Quick Sort, Merge sort	
	Greedy Method Fractional Knapsack problem, Optimal Storage on Tapes,	
	Huffman codes, Concept of Minimum Cost Spanning Tree, Prim's and Kruskal's	
Unit I	I Algorithm	15 L
	Dynamic Programming The General Method, Principle of Optimality, Matrix	
	Chain Multiplication, 0/1 Knapsack Problem, Concept of Shortest Path, Single	
	Source shortest path, Dijkstra's Algorithm, Bellman Ford Algorithm, Floyd-	
	Warshall Algorithm, Travelling Salesperson Problem	
	Branch & Bound Introduction, Definitions of LCBB Search, Bounding	
	Function, Ranking Function, FIFO BB Search, Traveling Salesman problem	
	Using Variable tuple.	
	Decrease and conquer Definition of Graph Representation, BES, DES,	
Unit I	V Topological Sort/Order. Strongly Connected Components. Biconnected	15 L
0	Component, Articulation Point and Bridge edge	
	Problem Classification Basic Concepts: Deterministic Algorithm and Non	
	deterministic Definitions of P. NP. NP-Hard, NP-Complete problems, Cook's	
	Theorem (Only Statement and Significance)	
TextBo	ok:	
1.	Data Structure and Algorithmic Thinking with Python, Narasimha Karumanchi, Ca	areerMonk
	Publications, 2016	
2.]	ntroduction to Algorithm, Thomas H Cormen, PHI	
Additio	nal References:	
1.]	Data Structures and Algorithms in Python, Michael T. Goodrich, Roberto Tamassia, I	Michael H.
	Goldwasser. 2016. Wilev	
2. 1	Fundamentals of Computer Algorithms. Sartai Sahni and Sanguthevar Rajasek	aran Ellis
]	Horowitz, Universities Press	
Links:		
1.	nttps://www.tutorialspoint.com/data_structures_algorithms/	
2.	nttps://www.javatpoint.com/data-structure-tutorial	

Sr. No.	Practicals of PGDSP202
1	Write a Python program to perform matrix multiplication. Discuss the complexity of the
	algorithm used.
2	Write a Python program to sort n names using Quick sort algorithm. Discuss the complexity of
	the algorithm used.
3	Write a Python program to sort n numbers using Merge sort algorithm. Discuss the complexity
	of algorithm used
4	Write a Python program for inserting an element into a binary tree.
5	Write a Python program for deleting an element (assuming data is given) from a binary tree.
6	Write a Python program for checking whether a given graph G has a simple path from source s
	to destination d. Assume the graph G is represented using adjacency matrix

7	Write a Python program for finding the smallest and largest elements in an array A of size n
	using the Selection algorithm. Discuss Time complexity
8	Write a Python program for finding the second largest element in an array A of size n using
	Tournament Method. Discuss Time complexity.
9	Write a Python program for implementing Huffman Coding Algorithms. Discuss the
	complexity of algorithm
10	Write a Python program for implementing Strassen's Matrix multiplication using Divide and
	Conquer method. Discuss the complexity of the algorithm.